Feature Extraction Techniques for Facial Expression Recognition Systems
نویسنده
چکیده
Automatic facial expression recognition has become a progressive research area since it plays a major role in human computer interaction. The facial expression recognition finds its major application in areas like social interaction and social intelligence. However it is not an easy task because the facial image, facial occlusion, face color/shape etc. is not easy to deal with. In this paper, various techniques for feature extraction like Gabor filters, Principal Component Analysis (PCA), Local Binary Patterns (LBP), Linear Discriminant Analysis (LDA), DCT, with different classifiers like Support Vector Machine (SVM) and Neural Networks, which are used to recognize human expression in various conditions on different databases are being examined. KeywordsFacial expression, Geometric features, Appearance features, PCA, LBP, Gabor, LDA
منابع مشابه
Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA Method for Face Recognition from Facial Expression
Facial expressions play a major role in Face Recognition Systems and image processing techniques of Human Machine Interface. There are several techniques for facial features selection like Principal Component Analysis, Distance calculation among face components, Template Matching. This algorithm describes a simple template matching based facial feature selection technique and detects facial exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016